REMOTE SUBSTITUENT EFFECTS IN THE BAEYER-VILLIGER OXIDATION. I. THROUGH-BOND γ SUBSTITUENT EFFECT ON THE REGIOSELECTIVITY¹

R. Noyori, ^{*}T. Sato, and H. Kobayashi Department of Chemistry, Nagoya University, Chikusa, Nagoya 464, Japan

Summary: Regioselectivity of the Baeyer-Villiger oxidation of 8-oxabicyclo[3.2.1] octan-3one derivatives is markedly affected by the electronic nature of substituents at position γ to the carbonyl function.

The Baeyer-Villiger oxidation² of ketones by peroxy acids proceeds via transient tetrahedral intermediates,³ which undergo alkyl migration with retention of configuration. When the ketone is unsymmetrically substituted, the group possessing greater positive-charge supporting ability tends to migrate more readily.⁴ Conformational factors are also important.⁵ 8-Oxabicyclo[3.2.1]octan-3-one derivatives serve as excellent models that elucidate factors controlling the reactivities and selectivities in the oxidation, because the rigid basic skeleton with a plane of symmetry is not distorted to any great extent upon introduction of substituents. In connection with our project on <u>C</u>-nucleoside synthesis,⁶ we have examined the oxidation of the derivatives bearing an alkyl group(s) at position α to the carbonyl group and found a complete regioselectivity.⁷ Here we disclose an unusually remote substituent effect on the regioselectivity.

$$\begin{array}{c} 0 \\ \parallel \\ R - C - R \end{array} + R'CO_3 H \Longrightarrow \left[\begin{array}{c} 0H \\ R - C - R \\ 0 \\ R'COO \end{array} \right] \xrightarrow{0}{} RCOR + R'COOH$$

When the ketonic substrates of type I^8 were exposed to 3 equiv of trifluoroperacetic acid in dichloromethane at 20-25 °C for 12 h, the regioisomeric lactones III α^9 and III α^{19} were obtained in high yields (80-100%). As summarized in Table I, the product ratio appeared to be highly dependent on the nature of the γ substituent X. Inspection of models as well as the general trend shown in the table indicates that the regioselectivity is governed by electronic effects of X group rather than the steric or conformational factors. When X is hydrogen or alkyl, no or slight preference for the production of III α was noted. By contrast, an electronwithdrawing group attached to the γ position favors the α' methylene migration over the α

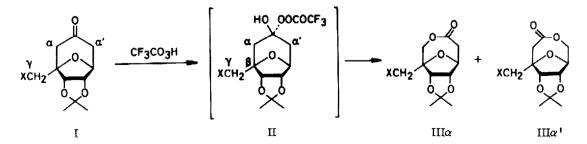
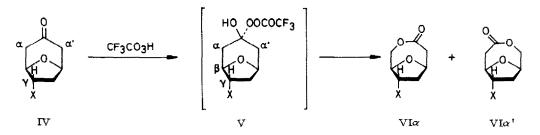

Х	IIIa/IIIa' ratio ^b	$VI\alpha/VI\alpha'$ ratio ^C
H	53:47	
$\underline{n}-C_4H_9$	50:50	
OCH ₂ C ₆ H ₅	48:52	30:70
OCOCH ₃	35:65	46:54
OCO-t-C4H9	31:69	3 5:6 5
OCOC ₆ H ₅	28:72	35:6 5
OCOCF ₃	23:77	
OSO ₂ CH ₃	19:81	
$OSO_2^{CF_3}$	14:86	

Table I. Remote Substituent Effect on the Regioselectivity in the Baeyer-Villiger Oxidation of I and $IV^{\frac{a}{2}}$


 $\stackrel{a}{-}$ All compounds gave consistent spectral data (IR and NMR) and elemental analysis. $\stackrel{b}{-}$ Determined by NMR analysis. $\stackrel{c}{-}$ Determined by high-pressure liquid chromatography.

methylene rearrangement. The relative α' -directing abilities are: $OSO_2R > OCOR > OR$; $OSO_2CF_3 > OSO_2CH_3$; $OCOCF_3 > OCOC_6H_5 > OCOCH_3$. Since migratory aptitude is related to the capability of stabilizing the electron-deficient center of the transition state of the II \rightarrow III conversion, the observed trend can be rationalized by considering the generally accepted mode of transmission of through-bond electronic effects. The C-X bond polarization caused by an electronegative X group decreases electron densities of the Υ and α positions in the tetrahedral intermediate II, whereas the α' position is unaffected by the nature of X group. As a consequence, a marked α' -regioselection is obtained. The feeble but definite α -selection achieved with the parent ketone (I, X = H) is also compatible with this view. Greater α / α' ratio, 88:12, has been obtained by the replacement of the CH₂X group by phenyl.¹⁰

A similar directing effect has been found in the oxidation of another type of γ -substituted substrates. Thus reaction of the ketone IV¹¹ possessing an electronegative X group with tri-

fluoroperacetic acid in dichloromethane (3 equiv, 15 °C, 12 h) gave a mixture of the lactones $VI\alpha^{12}$ and $VI\alpha'$.¹² The result obtained with some substrates is given in Table I (>80% yield). The substituent effect in the intermediate V would be less straightforward compared with the case of II, because X group accomodated in the seven-membered ring exerts electronic influence not only on the α carbon but also on the α' position (though less effectively). Nevertheless the observed α' -regioselection agrees qualitatively with the above described explanation.

These unprecedented remote interactions between the directing substituent and the migrating group should be a reflection of the rigidity of the σ framework that facilitates the through-bond electronic influence. Some indication for the efficiency of electronic transmission in these systems may be provided by ¹³C NMR measurement of a series of the ketonic substrates; the carbonyl carbon signal of I or IV shifted <u>upfield</u> considerably with an increase in electron-accepting ability of X substituents.¹³

Acknowledgment. This work was supported partially by a grant from the Ministry of Education, Japanese Government (Grant-in-aid, No. 484026).

REFERENCES AND NOTES

- 1. <u>C</u>-Nucleoside Synthesis. 14. Part 13: T. Sato and R. Noyori, <u>Tetrahedron Lett.</u>, submitted for publication.
- Reviews: C. H. Hassall, Org. React., 9, 73 (1957); P. A. S. Smith, "Molecular Rearrangements", Vol. 1, P. de Mayo, Ed., Interscience, New York, 1963, p 577; L. B. Lee and B. C. Uff, Q. Rev., Chem. Soc., 21, 429 (1967); H. O. House, "Modern Synthetic Reactions", 2nd Ed., Benjamin, Menlo Park, 1972, pp 321-329.
- R. Criegee, Justus Liebigs Ann. Chem., 560, 127 (1948); W. von E. Doering and E. Dorfman, J. Am. Chem. Soc., 75, 5595 (1953); B. Phillips, F. C. Frostick, Jr., and P. S. Starcher, ibid., 79, 5982 (1957).
- 4. W. von E. Doering and L. Speers, J. Am. Chem. Soc., 72, 5515 (1950); Y. Yukawa and T. Yokoyama, <u>Mem. Inst. Sci. Ind. Res. Osaka Univ.</u>, 13, 171 (1956); M. F. Hawthorne, W. D. Emmons, and K. S. McCallum, <u>J. Am. Chem. Soc.</u>, <u>80</u>, 6393 (1958).

- ⁵. R. R. Sauers, <u>J. Am. Chem. Soc.</u>, <u>81</u>, 925 (1959); J. Meinwald and E. Frauenglass, <u>ibid.</u>, <u>82</u>, 5235 (1960); R. R. Sauers and G. P. Ahearn, <u>ibid.</u>, <u>83</u>, 2759 (1961); R. R. Sauers and J. A. Beisler, <u>J. Org. Chem.</u>, 29, 210 (1964).
- 6. R. Noyori, T. Sato, and Y. Hayakawa, J. Am. Chem. Soc., 100, 2561 (1978).
- 7. T. Sato, M. Watanabe, and R. Noyori, Tetrahedron Lett., 4403 (1978).
- 8. I (X = OCOCH₃) was prepared from $\alpha, \alpha, \alpha', \alpha'$ -tetrabromoacetone and furfuryl acetate. T. Sato and R. Noyori, unpublished work.
- 9. The ¹H NMR spectrum of IIIα gave an AB quartet due to CH₂OC=O protons, whereas the IIIα'spectrum exhibited the same pattern of signal arising from CH₂COO protons.
- 10. T. Sato, M. Watanabe, and R. Noyori, Heterocycles, submitted for publication.
- 11. IV (X = OCOC₆H₅) was prepared in six steps from 8-oxabicyclo[3.2.1]oct-6-en-3-one
 [1. (<u>i</u>-C₄H₉)₂AlH/toluene. 2. 2, 3-dihydropyran-pyridinium <u>p</u>-toluenesulfonate/CH₂Cl₂.
 3. B₂H₆/THF, then 30% H₂O₂-NaOH. 4. C₆H₅COCI/C₅H₅N. 5. pyridinium <u>p</u>-toluene-sulfonate/CH₃OH. 6. pyridinium chlorochromate/CH₂Cl₂].
- 12. In ¹H NMR, the CHX signal of VI α occurred at a lower field as compared with that of VI α '
- 13. Typical substituents and chemical shifts (CDCl₃, ppm downfield from tetramethylsilane internal standard) follow. Ketone I: H, 205.59; OCH₂C₆H₅, 205.41; OCOCH₃, 204.19; OCOC₆H₅, 204.49; OCOCF₃, 203.34; OSO₂CH₃, 203.62; OSO₂CF₃, 202.74. IV: H, 206.67; OSi(CH₃)₂-t-C₄H₉, 205.76; OCH₂C₆H₅, 205.66; OCOCH₃, 204.78; OCOC₆H₅, 204.86.

(Received in Japan 7 April 1980)